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AN ASYMPTOTIC APPROACH TO THE PROffLEflS OF THE THEORY OF 
ELASTICITY OF BODIES OF FINITE DI#ENSIONS* 

G.I. ROMENSKAYA and M.A. SUMBATYAN 

A method is developed to solve the equilibrium problems of elastic 
bodies of fixed dimensions, based on a separation of the boundary-layer 
part of the solution by considering the problem for a half-strip. A 
closed solution in quadratures is constructed for the half-strip with a 
free lateral face and with given normal displaced longitudinal boundaries, 
using both symmetric and antisymmetric loading. When the normal stresses 
on the front boundaries are specified, the problem reduces to an integral 
equation of the first kind in a semi-infinite interval, the inversion of 
which is obtained by reduction to an infinite system of algebraic equations. 
The approach considered for problems of bodies of finite dimensions is 
asymptotic with respect to the small parameter characterizing the body's 
thickness. Testing of the method on a plane problem for an elastic 
rectangle enables the range of variation of this parameter to be invest- 
igated, in which this procedure is fairly accurate. In the example 
considered, for the case of a rectangular area, the stresses are found 
and compared with the results obtained earlier by other methods. The 
nature of the influence of the boundary layer on the stress distribution 
inside the body is investiaged. 

Asymptotic methods, used for bodies of slab configuration, one of 
whose characteristic dimensions (thickness) is significantly less than 
the other two /l-4/, can obviously be classified into three types. The 
first of them /5,6/ is characterized by the application of joined 
asymptotic expansions to a certain class of solutions of the equations 
of the theory of elasticity, namely uniform solutions. The second type 
/?,a/ is distinguished by an asymptotic analysis of the equations of 
the theory of elasticity. From this it is cledr that, to separate the 
boundary-layer part of the solution , it is enough, to a first approx- 
imation, to examine the two-dimensional problem and the problem of torsion 
for the half-strip, the lateral face of which is combined with the 
generating lateral surface of the plate at a given point. Finally, the 
third class includes the Vekua-Poniatovskii theory /9,10/, in which 
asymptotic methods are also developed /ll/. In this sense this paper 
relates to the second of these methods. 

1. In a Cartesian system of coordinates z,y we will examine the statical problem of the 

two-dimensional deformation of an elastic isotropic half-strip (the x-axis is the axis of 
symmetry and is directedparallelto the side faces , and the 3)-axis lies in the place of the 
half-strip end face) with the following boundary conditions: 

x = 0, ZXU = 0, 0, = 0 (1.1) 

Y=~l,?,,=0,ug=-J""(2) 

We will assume the boundary function f(x) to be .fairly smooth. 
In this symmetric case, (the extension-compression case), the problem was examined in 

/12/e where its closed solution was obtained, based on the theory of dislocations. Here a 
similar result will be obtained using the well-known classical representation of the solution 
for a half-strip (v is Poisson's ratio) /2/ 

U& [A(s)shsy+ C(s)ychsy]cossrds + 
0 
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By satisfying the boundary conditions (l.l), we obtain the relations 

A(s)osa- c (8) (2 e+scths), B,,c~,=~~+D,, W) 

C(u)[chay(l--scths)f syshsy]da 
nrl 0 

Further, we find the Fourier series coefficients in the last relationsof (l.l)and we use 
the formula for the function C(s) from the third relation (1.2). Confining ourselves to 
functions f(z), which tend to zero as z-am, after integration along a 1131 we obtain 

NOW for the Airy function Ip(z, y) we have the following representation: 

(1.3) 

The integral along s, in (1.41, is evaluated by integrating the first term by parts. To 
compute the series in (1.4) we use (1.3) and formulas for summing the resulting series /13/. 
As a result, integrating (1.4) along y, we finally obtain for the Airy function 

cP@TY)==-- & T f’ (t) Y (2, y, t) dt 
0 

(1.5) 

~(z,y,t)=+[~lI++nzt Shn;*+=)] 

Xf = ch IT (f + 2) + COB ny 

which, apart from the notation, aqrees uith the result obtained in /12/. 
If the function f(t) approaches a constant value fO differing from zero as z-+00, we 

must add to the formula (1.5) obtained the solution of the uniformly compressed half-strip 

Ip (2, Y) = G (1 - v)'Voz' 

we shall now examine the problem for a half-strip in the antisymmetric case (thebendinq 
casel, when the boundary conditions take the form 

I = 0, 'I," = 0, u, = 0 (1.6) 

y = fl, r*s = 0, "v = f (r) 

By reasoning similar to that uSed above, we obtain the following representation for the 

Airy function: 
m 

rp(=.y)=--sSf'(t)y(z,y.t)df 

+ Fsin-&ysh+(t+Z)] 

(1.7) 

In the case of a generalized plane stress state, in (1.51, (1.7). 2G/(1 -v) must be 
replaced by E. 

It is obvious that a solution to the problem of arbitrarily specified displacements of 
the front boundaries can be represented in the form of the summation of the symmetric and 
antisymmetric solutions. 

2. Consider the first, fundamental boundary value problem for the half-strip, when a 
given load acts on its front. For simplicity we shall confine ourselves to the symmetric 
case with the following boundary conditions: 

I = 0, t,s = 0, 0, = 0 (2.1) 

Y=~i,2x,-o,n"-f(r) 

The problem reduces to deriving a function f(r) from nn integral. fqllation Of the first 
kind in the segment (0, m), which is obtained from (1.5) when Y = 1 by applying to It the 
operation *P/iIz~. we shall sopor;ltn tnc operator in this integral eWntIon. cOrr~'V~~ndiW 
to the problem for ,I" infinite strip, .rnd invrrt it. FLn<,lly W<' ,,TTI"<‘ ,It enc rr?l.ll l,ln 



Further, we consider the relation 
8 

[An@+@-lJ-1=2 2 ke-a@+* 
II-l 

we integrate with respect to T, using (1.3), after which we obtain 

(2.2) 

We differentiate (2.3) and multiply scalarly by texp(-nnz). Consequently the problem 

of deriving the unknown function f(z) can be reduced to the following system of linear 
algebraic tquations in the coefficients D,: 

(2.4) 

We note that the 'degenerate' solution of (2.4) & = gn corresponds to the problem 

for an infinite strip. 
A similar system for a problem related to the one examined, is obtained another way in 

/2/, where the apparatus of Koyalovich infinite systems was used to investigate it. From 
the results obtained in /2/ it follows that for a fairly smooth function g(r) system (2.4) is 
regular, and we can apply the reduction method to it; the following relation holds 

iim (-l)lD,n = a0 = const (2.5) 
I-OD 

It was also shown in /2/ that when the boundary values satisfy the condition of pairing 

of shear stresses in the area's corner point (as is the case in the problem under considera- 

tion), all the stresses and displacements at this point are finite. 
By finding the coefficients D, and substituting them into (2.3), we can determine the 

function f(z), after which we determine the distribution of the stresses in the half-strip 
using (1.5). In particular, we have 

m 
a,==~,"-2G 2 D b (z, y) 

n-~ lBn (2.6) 

b,, (z, y) = (nn.z - 1) e- cos nny + I+ (2, y) 
m 

u+ - oQ + u: ~~ DA, (2. y) (2.7) 

%I (G y) = (nns + 1) e-s- cm nny - I- (2, y) 

I*(z,y)=Bn(-l).jshUChUY* sh2 (chuchuy-_vshushuy) u’ce3u.z 
u+%s (St%’ + .‘I* d” 

0 
Stresses corresponding to the problem for an infinite strip are denoted by O. 
It is interesting to check the feasibility of the boundary conditions in the formulas 

for the stresses. If we put y = fl in (2.6) and evaluate the integral occurring in the 
representation for b,, .it is easy to obtain b,,(z,fl)=O. Hence, (2.6) automatically sat- 
isfies the last of the boundary conditions (2.1), irrespective of which values the coefficients 

D, take. It can also be shown that the condition of half-strip equilibrium is automatically 
satisfied, i.e. 

% 1 
o,ds=Sg(z)dz, --i<y<i 

Unlike this formula (2.7) does not automatically make the stress cr= vanish when z = 0, 
and this boundary condition must be satisfied when the true values of the coefficients D, are 
substituted into (2.7) 

We shall investigate the rate of decay of the boundary layers. Using the theory of 
residues, one can show that b,(z, y) and E,(z, y) decrease as z- 00, as P exp(--S,,z) (a>0 
is a certain constant). Here 6, takes the values of the imaginary part of the zero function 
sh 2u + 2u, lying in the upper half-plane , and also values equal to nn, n = i, 2, . . . Since, 
as was noted in the introduction, the half-strip problem under consideration asymptotically 
covers the theory of plates, the established nature of the rate of decay of the boundary 
layers also remains true for plates with an arbitrary, smooth, lateral surface. The result 
obtained agrees withthe results obtained in /5,6/. 

3. We shall employ the procedure developed above for the half-strip for an asymptotic 
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analysis of the two-dimensional problem for a harrow rectangle (-l/X<r<lll, -I< yQ I), 
where h is a small parameter. 

For a small thickness of the area, the boundary later in the vicinity of the rigt-hand 
lateral side t= l/h obviously has only a slight effect on the left-hand boundary layer in 
the vicinity of the side z = -I/& and vice versa. Therefore, to construct boundary-layer 
solutions to a first approximation it is sufficient to examine the problem for two half-strips 
(-l/A Q z < 00) and (--00 <z Q 1/k). Using the idea employed for the first time in contact 
problems for a thin layer /14,15/, we shall represent the true solution to the problem 
asymptotically in the form 

P(S)'P1(_:+3)+cp*(~--o)-u(s), I+& (3.1) 

Here m(z) is any of the stresses or displacements in the rectangle, 'pl is the 
analogous function in the first half-strip, pa is in the second half-strip, and V(Z) is in 
the infinite strip (--oo<t<oo). The error of representation (3.1) has the order of e=P 
(-e/h) as k+o(&> 0), because as shown in /X,17/, the boundary layer parts of the solution 
to the problem in a thin rectangle decay exponentially as one moves inside the area. 

As an example, we will examine the following problem. Let li= 1, g(z)==-A COSN. This 
problem in the case of a rectnagular area was examined in /2/ by another method; here, however, 
it enables us to estimate the range of variation of the parameter h, in which the proposed 
asymptotic approach is fairly effective. 

Obviously, the series in (2.61, (2.7) (allowing for the relation (2.5)) has a high rate 
of convergence everywhere , apart from the area of the half-strip's lateral face z= 0. 
To compute (rs when .z==O in (2.6) instead of D,, the representation (2.4) was substituted 
and after summation with respect to n a series in k was obtained with a general term, which 
decreased as k increased, as UP’. To compute o, in the neighbourhood of the end I= 0 in 
(2.7) we took the finite number Dn. and further substituted the asymptotic formula (2.5), 
after whichthe series was sussned in finite form. 

To obtain numerical results a program in E'ORTRAN for the EC-1022 computer was compiled. 
The procedure for evaluating the integrals which occur in the coefficients b,, and c,, (2.6) 
and (2.7), and also in (2.4), are taken from /18/. 

In Table 1 the value of the stresses uY* =A-W%V and o,*= A-liOaa, in the half-strip 
when y=O are compared with the corresponding values ova* and az4* for an infinite strip. 
Note that at a distance from the end of the order of the plate thickness they differ by less 
than 406. This enables the rate of decay of the boundary-layer effect due to the seroth 
boundary conditions onthe end of the half-strip to be estimated. In the example considered, 

%" and ox" can be expressed in terms of elementary functions. 

Table 1 
- 
0.0 

- 

640 

350 

0 

--i& 

I --I- 0.1 03 

551 359 

333 299 

i 

10 75 

-in 407 

- 
0.5 

- 

-6,Z 

0 

161 

0 

l- 0.1 0.0 q-q-z- 
-359 -251 -33 

-333 -205 0 -T- 237 143 25 

173 107 0 

1.1 2.0 

192 339 

208 350 

-92 -17'6 

-107 -i&z 

Table 2 

0 

0.5 

- (0.2) 

In Table 2 the values of the stresses a"* obtained from (3.1) in the square area 
examined and represented by the odd rows are compared with the similar values obtained in 
/2/ (the latter are shown in brackets). A similar ccatparison for the stresses OS* is 
represented by the even rows. The calculations were carried out retaining 5,lO and 18 terms 
in the infinite systsm (2.4) and also in all infinite series. The results shown in Table 2 

are practically identical for all three cases. 
Note that the values given in Table 2 include the error in the solution of the boundary 

value problem for a half-strip and the error of (3.11, which hold asymptotically only for 

thin regions. Nevertheless, the cunparison indicates the effectiveness of the method for 
regions whosethicknessis cornaensurate with their length. 

Distribution curves of the stresses inside the square are shown in the figure. 
The time taken to calculate any of the stresses 0, and ou at an arbitrary point of the 

region (apart from the corner) averages lo-25 sec. 
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